
Surviving Client/Server:
User-Defined SQL Functions
by Steve Troxell

Delphi developers are accus-
tomed to having a lot of

programming power at their finger-
tips: Object Pascal, the VCL, direct
access to the Windows API and
hundreds of third-party libraries
and components that essentially
become seamless extensions to the
underlying language. In contrast,
SQL can be very limiting. Fortu-
nately, many vendors provide a
means for us to add some degree of
custom functionality to their imple-
mentation of the SQL language.
With InterBase, we can use user-
defined functions (UDFs) to extend
the native library of SQL functions,
which is fortunate since InterBase
provides us with only three built-in
SQL functions (Upper, Cast, and
Gen_ID).

A UDF is simply a Delphi function
written into a DLL and linked into
the InterBase server. Therefore we
can create a UDF for anything for
which we can create a Delphi func-
tion. From there, the DLL function
can be called from SQL just as
though it was a built-in SQL func-
tion. InterBase UDFs are not sup-
ported on Novell platforms, so we
will be concentrating on InterBase
for Windows NT and 95, using
Delphi 2.

Writing A Simple UDF
Suppose we have a database con-
taining mathematical or statistical
data and we wish to know the abso-
lute value of some field:

SELECT Abs(Delta) FROM Telemetry

InterBase does not natively pro-
vide such a function, but we can
easily add one through a UDF. List-
ing 1 shows our implementation of
Abs.

Our Abs function is expecting a
single input parameter of the SQL
datatype Double Precision and re-
turns a single value of the same

datatype. In Delphi, this translates
to the Double type. All input pa-
rameters are passed by reference,
so we use var to denote this in our
function declaration. We could just
as well have declared X to be a
pointer to a Double, but using var is
a bit cleaner and safer. InterBase
UDFs must be exported using the C
calling convention, so we use the
cdecl directive. Within the function
itself we can do whatever Delphi
permits us to do with the parame-
ters given to us. In this case, a
simple call to Delphi’s built-in Abs
function is all we need.

Deploying The UDF
Once we’ve compiled the source,
we need to place the resulting DLL
file such that the InterBase server
will find it when our Abs function is
requested. DLLs must be placed in
the \INTRBASE\BIN directory
(\IBLOCAL\BIN for Local Inter-
Base) or in a directory specified by
the PATH environment variable.
InterBase loads the DLL on demand
the first time any UDF within it is
needed by an InterBase user.

Linking The UDF Into SQL
Finally, we need to link the UDF into
SQL itself. For this purpose, Inter-
Base has the DECLARE EXTERNAL

FUNCTION statement. To allow our
Abs function to be used, we must
connect to the database and exe-
cute the SQL statement shown in
Listing 2. Notice that the function
name we use in SQL can differ from
the name we gave our function in
the DLL. After we identify the SQL
name of the function, we list the
SQL datatypes of each of the input
parameters in order. Here we have
only one double precision input
parameter.

The RETURNS clause tells us the
SQL datatype of the value returned
by the function. Remember that
our Delphi function returns a Dou-
ble value, not a pointer to a Double,
so the output parameter is passed
back by value rather than by refer-
ence. To denote this we include the
BY VALUE keywords. By reference
would be assumed if we hadn’t said
otherwise, which would mean we
would have to return a pointer to
something.

To make the association be-
tween the DLL function and the
SQL function, we name the DLL
function in the ENTRY_POINT clause
and the DLL which contains it in
the MODULE_NAME clause. It is very
important to keep in mind that the
function name provided for
ENTRY_POINT is case-sensitive with

library OurUDFs;
function udf_Abs(var X: Double): Double; cdecl;
begin
 Result := Abs(X); { Use Delphi’s Abs function }
end;
exports
 udf_Abs;
end.

➤ Listing 1

DECLARE EXTERNAL FUNCTION Abs
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT “udf_Abs” MODULE_NAME “ourudfs.dll”

➤ Listing 2

28 The Delphi Magazine Issue 20

how the function was declared in
the DLL source code.

At this point we now have a work-
ing Abs SQL function for this par-
ticular database. UDFs are not
inherently available server-wide,
so the DECLARE EXTERNAL FUNCTION
statement must be executed in
every database in which you want
to use the given UDF.

As you can see, UDFs are as sim-
ple as writing a Delphi function.
The only part to be concerned
about is making sure you’ve
handled the translation from SQL
datatypes to Delphi datatypes cor-
rectly. Let’s look at a few more
examples.

Passing String Parameters
Another valuable SQL function is
SubString, which returns a speci-
fied portion of a given string. Ironi-
cally, Borland thought well enough
to provide this function in its local
SQL implementation for Paradox
and dBase, but not for InterBase.
No matter, we’ll simply add one via
a UDF as shown in Listing 3.

In SQL, string fields are declared
as CHAR or VARCHAR and when these
fields are passed into a UDF we
receive a null-terminated string.

Remember that all input parame-
ters are passed by reference, so
our parameter declaration is sim-
ply PChar. InterBase only allows
numeric datatypes to be returned
by value from a UDF, so the return
value for Substring must be passed
by reference and that means
returning PChar.

To do the work of the SubString
function, we need only use Delphi’s
built-in StrLCopy function which
returns a specified maximum num-
ber of characters of a null termi-
nated string. Here we employ a bit
of pointer arithmetic to tell
StrLCopy to start copying a certain
distance into the given string.

The substring is copied into the
static global array Buffer. We must
have a static region of memory for
the function return value to point
to. A local variable in the function
would not suffice as that memory
space would be on the stack. If our
function returned a pointer into its
own temporary stack storage, that
pointer would be invalid as the
stack space would have been de-
stroyed as the function terminated.
Note also that we needn’t be con-
cerned about multiple InterBase
users using our UDF at the same

time and overwriting each other’s
data in Buffer. Invocations of our
UDF by different users will create
separate instances of the DLL and
Win32 provides distinct copies of
the DLL’s variables for each
instance.

Reading And
Returning DATE Fields
The InterBase DATE fields don’t map
directly to a Delphi type, so how do
we deal with them? Most refer-
ences on UDFs tell you to access
the InterBase API directly and call
the routines that translate
date/time values into C date/time
structures. However, there is a
much easier way. The InterBase
DATE datatype contains date and
time information in 8 bytes. The
first four bytes contain the number
of days since 17 Nov 1858. The next
four bytes contain the number of
0.0001 second intervals since mid-
night (with there being 864,000,000
of them to a 24 hour day). Date
values passed into a UDF can be
represented by the following type:

TIBDateTime =
 record
 NumDays: LongInt;
 DayFrac: LongInt;
 end;

Let’s make a simple UDF which re-
turns the number of days between
two dates. Listing 4 shows how we
might accomplish this. Notice that
by using Delphi’s Abs function, we
don’t care which of the two dates
is the larger date.

Writing a UDF that returns a
date/time is just as easy. We simply
compute a TIBDateTime value and
return a pointer to it. Remember,
only simple numeric datatypes can
be returned by value, all other
datatypes must be returned by ref-
erence. Listing 5 shows the
CalcDate function which returns a
date that is a given number of days
from a given date. Once again, we
must use a static global variable to
contain the returned date so we
can pass back a pointer to it.

Other Datatypes
Table 1 shows the InterBase
datatypes and the equivalent

Delphi Implementation:
implementation
var
 Buffer: array[0..255] of Char;
function udf_Substring(S: PChar; var Start, Len: SmallInt): PChar; cdecl;
begin
 Buffer[0] := #0;
 if (Start > 0) and (Len > 0) then
 StrLCopy(Buffer, S + Start - 1, Len);
 Result := Buffer;
end;

SQL Data Definition:
DECLARE EXTERNAL FUNCTION Substring
 VARCHAR(255), SMALLINT, SMALLINT
 RETURNS VARCHAR(255)
 ENTRY_POINT “udf_Substring” MODULE_NAME “ourudfs.dll”

➤ Listing 3

Delphi Implementation:
function udf_DateDiff(var Date1, Date2: TIBDateTime): SmallInt; cdecl;
begin
 Result := Abs(Date2.NumDays - Date1.NumDays);
end;

SQL Data Definition:
DECLARE EXTERNAL FUNCTION DateDiff
 DATE, DATE
 RETURNS SMALLINT BY VALUE
 ENTRY_POINT “udf_DateDiff” MODULE_NAME “ourudfs.dll”

➤ Listing 4

April 1997 The Delphi Magazine 29

Delphi types for purposes of UDF
development. Note that for the ex-
act precision datatypes NUMERIC
and DECIMAL, there is no direct
Delphi equivalent. So we must be
satisfied with an approximation
using the Double type.

BLOBs
When BLOB fields are manipulated
by a UDF, the process is somewhat
different. If a BLOB is to be passed
through a parameter of the UDF,
you do not receive a pointer to the
BLOB data itself. Rather, you get a
pointer to a BLOB Control Structure
as shown in Listing 6.

The BLOB Control Structure
contains data about the BLOB as
well as function pointers, or call-
backs, which allow your UDF to
access the BLOB. UDFs cannot ac-
cess BLOB data directly but must
do so through the BLOB callback
functions.

The data fields in the BLOB
structure should be fairly obvious:
you can get the total size of the
BLOB in bytes, the number of seg-
ments and the size in bytes of the
largest BLOB segment. BlobHandle
is a reference to the BLOB itself,
but you cannot access the BLOB
directly via this pointer. BlobHandle
is used with the callback functions
to identify the BLOB. If the BLOB is
null in the database, then we will
get a nil pointer for BlobHandle. It’s
important that we check for this
because passing a nil handle into
the callback functions will result in
an access violation in the server.

The BlobGetSegment function is
used to import the actual BLOB
data into our UDF. We pass in the
BLOB handle, a pointer to our inter-
nal data buffer, its length, and a
variable to hold the number of
bytes actually copied into the buff-
er. BlobGetSegment gives us back
one BLOB segment at a time and
returns True as long as there are
more BLOB segments to read. So,
to get the entire BLOB, we simply
keep calling BlobGetSegment in a
loop until we have no more
segments to read.

Listing 7 shows a BLOB UDF
which returns a count of the num-
ber of occurrences of a particular
string within the BLOB. Note that

we’re assuming we’ve been given a
text BLOB, as there is nothing we
can do to check the subtype of the
BLOB passed in.

Maintaining UDFs
InterBase does not load the DLL
and look for the given function until
the function is first used in an SQL
statement, so you will not get any
error messages from DECLARE
EXTERNAL FUNCTION if you’ve given
the wrong function or DLL name. If

you’ve made a mistake in binding a
UDF to the database, you must first
drop the existing declaration
using, for example:

DROP EXTERNAL FUNCTION Abs

before attempting a new DECLARE
EXTERNAL FUNCTION statement.

If you wish to change the imple-
mentation of one or more UDFs
within a given DLL, then you must
shut down the InterBase server to

Delphi Implementation:
implementation
var
 ReturnDateTime: TIBDateTime;
function udf_CalcDate(var BaseDate: TIBDateTime; var Days: SmallInt):
PIBDateTime; cdecl;
begin
 ReturnDateTime := BaseDate;
 Inc(ReturnDateTime.NumDays, Days);
 Result := @ReturnDateTime;
end;

SQL Data Definition:
DECLARE EXTERNAL FUNCTION CalcDate
 DATE, SMALLINT
 RETURNS DATE
 ENTRY_POINT “udf_CalcDate” MODULE_NAME “ourudfs.dll”

➤ Listing 5

TBLOBStruct =
 record
 BlobGetSegment: TGetSegmentProc;
 BlobHandle: Pointer;
 NumberOfSegments: LongInt;
 MaxSegmentLength: LongInt;
 TotalSize: LongInt;
 BlobPutSegment: TPutSegmentProc;
 end;
TGetSegmentProc = function(BlobHandle: Pointer; Buffer: Pointer;
 BufLen: SmallInt; var BytesWritten: SmallInt): WordBool; cdecl;
TPutSegmentProc = procedure(BlobHandle: Pointer; Buffer: Pointer;
 BufLen: SmallInt);

➤ Listing 6: The BLOB Control Structure

InterBase Type Delphi Equivalent

Char PChar

Date (see Reading And Returning Date Fields section)

Decimal Double*

Double Precision Double

Float Single

Integer LongInt

Numeric Double*

SmallInt SmallInt

VarChar PChar

*With possible loss of precision

➤ Table 1: SQL datatypes and Delphi equivalents

30 The Delphi Magazine Issue 20

get it to unload the DLL (if it has
been loaded because one or more
of the UDFs have been used). Then
copy the new DLL into place and

re-start the server. If there have
been no changes to the UDF inter-
faces, then everything will work
normally. If there have been

changes to the DLL function names
or parameters, then you’ll have to
drop the affected UDF definition
(DROP EXTERNAL FUNCTION) and rede-
fine it (DECLARE EXTERNAL FUNCTION)
in each database where it will be
used.

Conclusion
User-Defined Functions allow you
to create very powerful extensions
to InterBase’s SQL language. Just
remember to be careful about
when parameters are passed by
reference and when they are
passed by value and you shouldn’t
have too much trouble creating
your own huge library of SQL
functions.

Steve Troxell is a Senior Software
Engineer with TurboPower
Software. He can be reached by
email at stevet@turbopower.com
or on CompuServe at 74071,2207

function udf_BlobStrCount(SubStr: PChar; var Blob: TBLOBControlStruct):
 SmallInt; cdecl;
var
 Buffer: PChar;
 BufLen: SmallInt;
 S: PChar;
 BytesBack: SmallInt;
 L: Integer;
begin
 Result := 0;
 L := StrLen(Substr);
 with Blob do begin
 if BlobHandle = nil then Exit; { Check for a null BLOB }
 BufLen := MaxSegmentLength + 1;
 GetMem(Buffer, BufLen);
 try
 { Get each BLOB segment }
 while BlobGetSegment(BlobHandle, Buffer, BufLen, BytesBack) do begin
 { Count the occurrences of the substring }
 S := StrPos(Buffer, Substr);
 while S <> nil do begin
 Inc(Result);
 S := StrPos(S + L, Substr);
 end;
 end;
 finally
 FreeMem(Buffer, BufLen);
 end;
 end;
end;

➤ Listing 7

April 1997 The Delphi Magazine 31

	Writing A Simple UDF
	Deploying The UDF
	Linking The UDF Into SQL
	Passing String Parameters
	Reading And Returning DATE Fields
	Other Datatypes
	BLOBs
	Maintaining UDFs
	Conclusion

